

CMSA

The Colleges of Medicine of South Africa NPC

Nonprofit Company (Reg No.1955/000003/08) Nonprofit Organisation (Reg. No. 009-874 NPO) Vat No. 4210273191

27 Rhodes Avenue, PARKTOWN WEST, 2193

Tel: +27 11 726 7037; Fax: +27 11 726 4036

Website: General: www.cmsa.co.za Academic.Registrar@cmsa.co.za

EXAMINATIONS & CREDENTIALS

APPENDIX A:*

Syllabus for Part I of the FC Rad Onc(SA) examination:

Physics curriculum

1.0 Atomic and nuclear structure

1.1 Structure of the atom

- 1.1.1 Nucleus, orbital shells, energy levels, binding energy
- 1.1.2 Particles proton, electron, neutron, positron
- 1.1.3 Describe atomic number, atomic mass, isotopes

1.2 Wave and quantum models of radiation

1.2.1 Energy and wavelength, energy spectrum

1.3 Radioactivity

1.4.2

- 1.3.1 Decay processes
- 1.3.2 Activity, half life
- 1.3.3 Parent daughter relationships and equilibrium
- 1.3.4 Nuclear reactions, bombardment and reactors

1.4 Production of photons and electrons

- 1.4.1 Physical concepts of beam production
 - Bremsstrahlung
 - X-ray tube design
 - Energy spectrum
 - Characteristic radiation
 - Generation of beams
 - Filters
 - Gamma sources
 - Linear accelerator
 - Beam geometry
- 1.4.3 Attenuation of beams
 - Half value layer
 - Attenuation, energy transfer, and absorption
 - Attenuation co-efficients

1.5 Interaction of x-rays and gamma rays with matter

- 1.5.1 Absorption and scatter of x-rays in matter
- 1.5.2 Photoelectric effect
- 1.5.3 Compton effect
- 1.5.4 Pair production

- 1.6.1 Direct and indirect ionisation
- 1.6.2 Elastic and inelastic collisions
- 1.6.3 Linear energy transfer
- 1.6.4 Heavy particles interactions
- 1.6.5 Interactions of Neutrons
- 1.6.6 Interactions of Electrons

1.7 Radiotherapy equipment

- 1.7.1 Linear accelerator
- Construction of radiotherapy machines
- Principles of beam production
- Beam collimation and modifiers
- 1.7.2 Cobalt units
- 1.7.3 Simulators
 - Operation
 - Fluoroscopy and Intensifiers
 - CT simulation
- 1.7.4 Other imagers
 - Principles of ultrasound, CT, MRI, PET
 - Applications and limitations of above imaging to radiotherapy
- 1.7.5 Brachytherapy

1.7.6

- Sources used
- Calibration of sources
- Radioprotection
- Equipment selection and specifications

1.8 Radiation beam quality and dose

- 1.8.1 Mono energetic and heteroenergetic beams
- 1.8.2 Dose quantities and units
 - Kerma
 - Exposure
 - Absorbed dose
 - Dose equivalent
 - RBE dose
 - Calculation of absorbed dose from exposure
 - Relationship between kerma, exposure and absorbed dose

1.9 Radiation measurement and calibration

- 1.9.1 Ionisation chambers
- 1.9.2 Principles of beam calibration
- 1.9.3 Other methods of measuring absorbed dose
 - Calorimetry
 - Chemical dosimetry
 - Solid state detectors
 - Film dosimetry

- Inverse square law
- Backscatter factor
- Electron build up
- Percentage depth dose
- Equivalent squares
- Tissue-air ratio
- 1.10.2 Dose calculations
 - Monitor unit calculations
 - Output factor
 - Field size correction factors
 - Collimator and phantom scatter factor
 - Beam modifier factors
 - Patient attenuation factors
 - Calculations in practice
 - SSD technique
 - SAD technique
- 1.10.3 Translation of planning to calculations
 - Beam parameters
 - Beam weighting
 - Arc rotation therapy
 - Irregular fields
- 1.10.4 Dose calculations
 - Monitor unit calculations
 - Output factor
 - Field size correction factors
 - Collimator and phantom scatter factor
 - Beam modifier factors
 - Patient attenuation factors
 - Calculations in practice
 - SSD technique
 - SAD technique
- 1.10.5 Translation of planning to calculations
 - Beam parameters
 - Beam weighting
 - Arc rotation therapy
 - Irregular fields
- 1.10.6 Computerised treatment planning
 - Isodose curves(beam characteristics)
 - Surface dose
 - Parallel opposed beams
 - Wedge techniques, isodose curves, angles
 - Beam combinations
- 1.10.7 Surface corrections and heterogeneities
 - Surface obliquity
 - Inhomogeneity correction
- 1.10.8 Adjoining fields and special dosimetry problems
 - Two-fields
 - Three-fields
 - Craniospinal gapping
 - Pacemaker
 - Gonadal dose
 - Pregnant patient

1.11 Electron beam treatment

- 1.11.1 Basic characteristics
 - Depth-dose curves
 - Interactions
 - Obliquity
- 1.11.2 Treatment planning principles
 - Selection of energy, field size
 - Skin dose
 - Bolus
 - Field shaping
 - Field-matching
 - Inhomogeneities

1.12 External beam quality assurance

- 1.12.1 Goals
- 1.12.2 Roles and duties
- 1.12.3 Staffing
- 1.12.4 Linac QA
 - Commissioning linear accelerators (principles)
- 1.12.5 Routine Quality assurance requirements
 - Daily, monthly, annually

1.13 Radiation protection and shielding

- 1.13.1 Definitions and standards
- 1.13.2 Dose equivalent and effective dose equivalent
- 1.13.3 Types of radiation exposure
 - Background
 - Man-made
 - National recommendations on exposure limits
- 1.13.4 Protection regulations
- 1.13.5 Administrative requirements
 - Safety programme
 - Staff monitoring
- 1.13.6 Radiation shielding principles
 - Treatment room design
 - Types of barriers
 - Neutron shielding for high energy beams
 - Sealed source storage
 - Protection equipment and surveys
 - Monitoring equipment

1.14 Imaging in radiation oncology

- 1.14.1 Routine diagnostic imaging principles
- 1.14.2 Port films
- 1.14.3 Processors
- 1.14.4 Other imaging
 - Electronic portal imaging devices

1.15 **3D conformal therapy**

- 1.15.1 Concepts and goals vs traditional RT
 - Technology and methods for planning
 - Multiple volume images
 - Image processing
 - Virtual simulation
 - DRR's
 - Multiple beams and non-coplanar beams

- 1.15.2 Optimisation methods
 - Uniform vs non-uniform delivery
 - Margins
 - DVH's
- 1.15.3 Implications of treatment variabilities
 - Set-up
 - Patient factors
 - ICRU 50 and 62 prescribing recording and reporting

1.16 Assessment of patient setup and verification

- 1.16.1 Immobilisation devices and methods
- 1.16.2 Positioning devices and methods
- 1.16.3 In-room treatment imaging
 - Cone-beam CT
 - Ultrasound
 - Fiducials
 - On-line correction of set-up errors
 - Adaptive planning concepts

1.17 Brachytherapy planning

- 1.17.1 Calculation of dose distribution
 - Calculation of dose from a point source/line source
- 1.17.2 Systems of implant dosimetry
- 1.17.3 Implantation techniques
 - Surface
 - Interstitial
 - Intracavitary
- 1.17.4 Gynaecological implants
 - Manchester system
 - Bladder and rectal dose
 - ICRU

1.18 **IMRT**

- 1.18.1 Delivery systems
- 1.18.2 Principles of dose prescription and inverse planning
- 1.18.3 QA

1.19 Special procedures

- 1.19.1 Stereotactic radiosurgery
 - Delivery systems
 - Principles of planning and delivery
 - QA
 - Total body irradiation
 - Principles of planning and delivery

1.20 **Particle therapy**

1.19.2

- 1.20.1 Protons
 - Energy deposition
 - Equipment
 - Beam dosimetry
 - Principles of production and delivery
- 1.20.2 Neutrons
 - Basic interactions
 - Principles of production and delivery

2.0 Radiobiology and Cancer Biology

2.1 **Basic Principles of radiobiology**

- 2.1.1 Interaction of radiation with matter
- 2.1.2 DNA damage by radiation
- 2.1.3 Cell survival curves
- 2.1.4 Cell radiosensitivity and radiocurability
- 2.1.5 Cell cycle
- 2.1.6 Lethal, potentially lethal, sublethal damage and repair
- 2.1.7 Dose rate effects
- 2.1.8 The basis of fractionation: 4 R's of radiobiology
- 2.1.9 Factors that modify clinical radiation response and methods to overcome limitations. The oxygen effect, radiosensitisers, radioprotectors, hypoxic cell sensitisers, hyperthermia, linear energy transfer.
- 2.1.10 Biological equivalent dose and linear quadratic equation (including practical clinical calculations)
- 2.1.11 Other radiation modalities (neutrons, protons), relative biological effectiveness
- 2.1.12 Tumour growth kinetics (Tpot, growth fraction, cell loss).

2.2 Effect of radiation on normal tissue

- 2.2.1 Normal tissue tolerance organ and volume specific
- 2.2.2 Acute and late effects of radiation on normal tissues, including the eye and gonads (also hereditary effects, carcinogenesis)
- 2.2.3 Total body radiation
- 2.2.4 Effect of irradiation on the embryo and fetus

2.3 Cancer biology

- 2.3.1 Terminology of molecular biology of cancer
- 2.3.2 Carcinogenesis
- 2.3.3 Oncogenes
- 2.3.3 Tumour suppressor genes
- 2.3.4 Growth factors and signal transduction pathways
- 2.3.5 Apoptosis
- 2.3.6 Angiogenesis
- 2.3.7 Invasion and metastasis.

3.0 Applied Anatomy

3.1 Keeping the goal of treating the oncology patient in mind:

- 3.1.1 The structure, boundaries, vascular and lymphatic pathways, and neurological supply of: head and neck, the central nervous system, thoracic and abdominal organs and upper limbs proximal to mid humerus and lower limbs proximal to and including the femoral triangle
- 3.1.2 Landmark localisation:
 - On surface anatomy
 - Imaging
- 3.1.3 The relation of organs to one another and their movement
- 3.1.4 Radiological anatomy on relevant imaging techniques
- 3.1.5 Routes of potential cancer spread.